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Abstract

In most situations, simple techniques for handling missing data (such as complete case analysis, overall mean imputation, and the miss-
ing-indicator method) produce biased results, whereas imputation techniques yield valid results without complicating the analysis once the
imputations are carried out. Imputation techniques are based on the idea that any subject in a study sample can be replaced by a new ran-
domly chosen subject from the same source population. Imputation of missing data on a variable is replacing that missing by a value that is
drawn from an estimate of the distribution of this variable. In single imputation, only one estimate is used. In multiple imputation, various
estimates are used, reflecting the uncertainty in the estimation of this distribution. Under the general conditions of so-called missing at
random and missing completely at random, both single and multiple imputations result in unbiased estimates of study associations. But
single imputation results in too small estimated standard errors, whereas multiple imputation results in correctly estimated standard errors
and confidence intervals. In this article we explain why all this is the case, and use a simple simulation study to demonstrate our
explanations. We also explain and illustrate why two frequently used methods to handle missing data, i.e., overall mean imputation and
the missing-indicator method, almost always result in biased estimates. © 2006 Elsevier Inc. All rights reserved.
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1. Introduction seems to be a general lack of understanding that has limited
their use in epidemiological research.

In this short report we will give a gentle introduction
into the logic behind these sophisticated imputation tech-
niques of missing data. We will not go into technical
details, nor into details on how to perform these analyses.
For this we refer to the literature [2—8]. Instead, to assist
medical researchers in their future data analyses we aim to
clarify in simple wording why (more sophisticated) imputa-
tion is a better, more valid method than the simple and fre-
quently used techniques for handling missing data. We will
start with a brief introduction on different types of missing
data and the principles of imputation in general, followed
by explaining single and multiple imputation, and why
frequently used methods fail. All this will be illustrated
using data from a simple simulation study.

Missing data are a common problem in all types of
medical research. There are various methods of handling
missing data. Simple and frequently used methods include
complete or available case analysis, the missing-indicator
method [1], and overall mean imputation. However, these
methods lead to inefficient analyses and, more seriously,
commonly produce severely biased estimates of the associ-
ation(s) investigated [2—6]. There are more sophisticated
(imputation) techniques to handle missing data, such as
multiple imputation, that give much better results [2—6].
With these techniques, missing data for a subject are
imputed by a value that is predicted using the subject’s
other, known characteristics. Presently, these sophisticated
techniques are easy accessible and available in standard
software such as SAS and S-Plus. Nevertheless, there

2. Types of missing data

Abbreviations: MCAR, missing completely at random; MNAR, miss- . ..
. ) . If subjects who have missing data are a random subset of
ing not at random; MAR, missing at random.
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of MCAR are when a tube containing a blood sample of
a study subject is broken by accident (such that the blood
parameters can not be measured) or when a questionnaire
of a study subject is accidentally lost. The reason for
missingness is completely random, i.e., the probability
that an observation is missing is not related to any other
patient characteristics. When missing data are MCAR,
evidently the set of subjects with no missing data is also
a random sample from the source population. Hence, most
simple techniques for handling missing data, including
complete and available case analyses, give unbiased re-
sults [2]. Obviously, estimating associations using a com-
plete or available case analysis remains less efficient (i.e.,
imprecise), because part of the data is not used.

If the probability that an observation is missing depends
on information that is not observed, like the value of the ob-
servation itself, missing data are called missing not at ran-
dom (MNAR) [9]. For example, when asking a subject for
his or her income level it might well be that missing data
are more likely to occur when the income level is relatively
high. Here, the reason for missingness obviously is not
completely at random, but is related to unobserved patient
characteristics. If missing data are MNAR, valuable infor-
mation is lost from the data and, there is no universal
method of handling the missing data properly [1—9].

Mostly, missing data are neither MCAR nor MNAR [5].
Instead, the probability that an observation is missing com-
monly depends on information for that subject that is pres-
ent, i.e., reason for missingness is based on other observed
patient characteristics. This type of missing data is confus-
ingly called missing at random (MAR), because missing
data can indeed be considered random conditional on these
other patient characteristics that determined their missing-
ness and that are available at the time of analysis [9]. For
example, suppose we want to evaluate the predictive value
of a particular diagnostic test, and the test results are known
for all diseased subjects but unknown for a random sample
of nondiseased subjects. In this case the missing data would
be MAR: conditional on a patient characteristic that is ob-
served (here the presence or absence of the disease) missing
data are random. Of course, it need not be that missingness
only depends on the outcome variable. But it is the simplest
situation, with one dependent or outcome variable and only
one independent or predictor variable. Hence, we will use
this example throughout the remainder of the article to ex-
plain the method of imputation. Moreover, situations where
the missing predictor values depend (directly or indirectly)
on the outcome status regularly occur in epidemiological
research [10,11]. When missing data are MAR, a complete
or available case analysis is no longer based on a random
sample from the source population and selection bias likely
occurs [2—8,12]. Generally, when missing data are MAR,
all simple techniques for handling missing data, i.e., com-
plete and available case analyses, the indicator method
and overall mean imputation, give biased results. However,
more sophisticated techniques like single and multiple

imputations give unbiased results when missing data are
MAR [2—8,12]. In the next sections we will explain and il-
lustrate both issues.

3. Imputation is replacement

We start this section by noting that in the classical (fre-
quentistic) statistical view, conclusions drawn from any
study should not depend on the sample that is involved in
the study. Should the study be repeated with a different
sample, nearly identical results should be obtained. The
conclusions do not depend on the given set of subjects in
the sample. This implies that every subject in a randomly
chosen sample can be replaced by a new subject that is ran-
domly chosen from the same source population as the orig-
inal subject, without compromising the conclusions.
Imputation techniques are also based on this basic principle
of replacement.

In our diagnostic study example we can replace any non-
diseased subject with a missing value for the test result in
the sample, by a newly chosen, nondiseased subject from
the source population for whom the test result is known.
Note that the subject characteristics of this new replaced
(which can also be read as imputed) subject will and also
need not be the same as the characteristics of the original
subject. The result is a new random sample from the source
population and conclusions drawn from analyzing this
sample will be valid for the source population.

Of course, if only nondiseased male subjects would have
missing values, these should be replaced by subjects ran-
domly chosen from the source population including only
nondiseased males. Accordingly, and as explained above,
subjects with missing data based on (other) known charac-
teristics—i.e., MAR—are by definition a random subset
from the sample given these other known characteristics.
Hence, they could be replaced by randomly selected sub-
jects from the part of the source population that we can
identify by these characteristics. Analyzing the thus com-
pleted study sample would lead to valid results, both with
respect to bias and precision of the estimated associations
because we still analyze a random sample from the source
population.

4. Single imputation

Direct replacement of subjects by new subjects from an
identifiable source population based on observed subject
characteristics may be feasible when the number of study
variables is limited, as in our diagnostic example study
where only two variables, the test result and disease status,
were used. Commonly, however, the number of covariates
is large. Suppose a nondiseased male subject, aged 39, with
a body mass index of 24.5, and a systolic blood pressure of
110 has a missing test result. If the missingness of the test
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result is dependent on all these known covariates (thus
MAR), we should replace this subject by a randomly cho-
sen subject from the source population of nondiseased
males with the same age, body mass index, and systolic
blood pressure. Because this is rather burdensome if not im-
possible, one can instead use the observed or available data
of the other subjects to make an estimation of the distribu-
tion of the test result (that was initially missing) in the
source population. In our example with only one other vari-
able (disease status), one can estimate the distribution of
the test result for the nondiseased subjects in a number of
ways. For example, assuming that the continuous test result
is normally distributed, we can calculate the sample mean
(and standard deviation) of the observed nondiseased
subjects—i.e., with no missing test results—and use this as
estimate for the source population values. For more com-
plex situations in which more subject characteristics are
known that may have determined the reason for missing-
ness, this univariable approach does not suffice. One rather
needs to use a multivariable approach, e.g., a multivariable
regression model, to better estimate the underlying distribu-
tion of the test result in the source population. Subsequently,
this multivariably estimated distribution can be used to ran-
domly draw a test result to impute the missing test results for
the subjects in the study sample. This more sophisticated
imputation procedure will be called the single imputation
procedure. The procedure more sophisticated, because the
imputation of the test result is based on various other—but
known—characteristics of the subjects, rather than only on
the estimated mean of the test result in the observed subjects
(i.e., overall mean imputation which will be described be-
low). It is single because we only impute each missing once.

If the estimated distribution of the test results based on
the observed subjects in the study sample would be
identical to the “true”” underlying distribution in the source
population, the single imputation procedure would be
equivalent to direct replacement as described above. This
of course will seldomly be the case, but the estimated dis-
tribution can certainly be an unbiased estimate of the pop-
ulation distribution. Therefore, the associations under study
estimated after missing data have been completed (im-
puted) by the more sophisticated single imputation—and
using standard analytical techniques and software—are un-
biased. Doing so, however, one analyzes the completed data
set as if all data were indeed observed. Because this was not
the case, the single imputation procedure commonly results
in an underestimation of the standard errors or too small
P-values, i.e., overestimation of the precision of the study
associations [2—5]. We will illustrate this in a following
paragraph using simulated data.

5. Multiple imputation

To obtain correct estimates of the standard errors and
P-values, we should take into account the imprecision

caused by the fact that the distribution of the variables with
missing values is estimated. This can be done by creating
not a single imputed data set, but several or multiple
imputed data sets in which different imputations are based
on a random draw from different estimated underlying dis-
tributions [4,5]. There are various approaches to creating
these multiple imputed data sets. However, because this is
an introductory article we refer to a few accessible sources
[5,15]. Each imputed data set can again be analyzed using
standard analytical techniques. Each analysis will produce
an association with standard error, resulting in multiple re-
gression coefficients (or odds ratios) and corresponding
standard errors. Because each estimated association is un-
biased (assuming that data are MAR), the estimates can
simply be averaged to get a pooled estimate of the associ-
ation. These averaging will generally lower the variance
of the combined estimate. The multiple standard errors
can also be averaged. The mean of the standard errors is
a measure for the uncertainty in the estimated associations
caused by sampling the study subjects from a source popu-
lation. Additionally, the standard deviation of the multiple
estimated associations (e.g., regression coefficients) reflects
the differences between the imputed data sets, i.e., the un-
certainty in the estimated underlying distributions of the
variables with missing values. Combining both sources of
uncertainty—sampling and imputation—using a simple for-
mula results in a single corrected standard error of the esti-
mated association [4]. Because this formula tends to
produce too large and, thus, too conservative standard er-
rors, a more precise formula is available, which, however,
is not commonly used in multiple imputation [13].

6. Simulation study

We performed a simulation study based on our diagnos-
tic example to illustrate that single imputation yields un-
biased estimates with too narrow confidence intervals and
multiple imputation indeed yields unbiased estimates with
correct standard errors and P-values. We simulated 1,000
samples of 500 subjects using R [14]. The samples were
drawn from a population consisting of equal numbers of
diseased and nondiseased subjects. The true regression
coefficient in a logistic regression model linking the diag-
nostic test to the probability of disease was 1 (odds ratio =
2.7), with an intercept of 0. The diagnostic test was nor-
mally distributed with a mean of 0 and a standard deviation
of 2. No other tests or subject characteristics were consid-
ered. Of the nondiseased subjects, 80% were given a miss-
ing value on the test. The diseased subjects had no missing
data. Accordingly, missing data were MAR because they
were based on other observed variables, here the true dis-
ease status, and overall approximately 40% were missing.

Using the procedure mice (for details about the software
we refer to the literature [15]), 10 multiple imputed data
sets were created. Then the association between the test
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and the disease status plus standard error was estimated in
each data set using logistic regression. Subsequently, all as-
sociations with standard errors were analyzed within each
of the 10 multiply imputed data sets and the estimates were
combined as described above. One extra data set was
imputed and analyzed as a single imputed data set.

The results are given in Table 1. For both the single and
the multiple imputation procedures, the estimates of the as-
sociation are indeed unbiased. The single imputation proce-
dure appears more precise because of the smaller standard
error thus leading to smaller confidence intervals, but the
90% confidence interval does not contain the true parame-
ter as often (only 63.6%) as it should (i.e., 90%). Multiple
imputation leads to a larger standard error and wider confi-
dence intervals, but the estimated standard errors are more
correct and the confidence interval has the correct coverage
(i.e., 90.3%). Hence, in contrast to single imputation, mul-
tiple imputation gives sound results both with respect to
bias and precision.

7. Why do frequently used methods fail?
7.1. Indicator method

A still popular method for handing missing values is the
so-called missing-indicator method [1]. For each indepen-
dent variable with missing values a new dummy or indica-
tor (0/1) variable is created with “1”” indicating a missing
on the original variable and “0” indicating an observed
value. For the original variable the missing values are
recoded as ““0.” For (original) categorical variables this in
fact means, creating an extra value category for the missing
values. When estimating the association between the
independent variable and the outcome in a multivariable
analysis, the indicator is always included together with
the original (though recoded) variable. The main advantage
of the indicator method is that all subjects are used in the
multivariable analysis. Although no subjects need to be ex-
cluded, we would not recommend this method even when
missing data are MCAR. We illustrate this by extending
our simple (two variable) diagnostic example from the
previous section.

Suppose again that the population consists of equal
numbers diseased and nondiseased subjects and that the di-
agnostic test is associated with the true disease status. But

Table 1

Results from a simulation study with true regression coefficient of 1 in
which missing data were created according to “MAR” and imputed
using either single or multiple imputation (for details see text)

Regression Standard Coverage of the 90%
Method coefficient error confidence intervals
Single 0.98904 0.090186 63.6
imputation
Multiple 0.98920 0.136962 90.3
imputation

now we also consider a second test, which is a proxy for the
first test. This means that the second test is not directly re-
lated to the true disease status, but only via the first test. If
we would draw a sample from this population and formu-
late a logistic regression model to predict disease status
on basis of the first test only we would expect a positive re-
gression coefficient (case 1). If we would predict disease
status only using the second test we would again expect
a positive association, because of the indirect relation be-
tween disease status and the second test (case 2). If we
would predict disease status using both tests, we would ex-
pect only a positive association for the first test, comparable
to case 1, and a regression coefficient near O for the second
test (case 3).

Suppose now that there are missing values on the first
test but not on the second test, and that these missing data
are—even—MCAR, ie., equal proportion of missing
values in diseased and nondiseased subjects. When using
a logistic model to predict the true disease status based
on both tests and using the indicator method for handling
the missing values of the first test, the regression coefficient
of the second test will now not be “0”” as should be. For the
subjects with no missing data indeed case 3 will apply. But
for the subjects who do have missing values on the first test,
case 2—rather than case 3—suddenly applies because there
are no observations for the first test. Hence, the estimate for
the regression coefficient of the second test is biased and
will be somewhere between 0, the true estimate (case 3),
and the value of case 2. Moreover, if the regression coeffi-
cient of the second test is biased then so is the regression
coefficient of the first test given the mutual adjustment in
multivariable modeling.

To illustrate this, we performed a second simulation
study similar to the first simulation study. We again simu-
lated 1,000 samples of 500 subjects drawn from a popula-
tion consisting of equal numbers of diseased and
nondiseased subjects (using R [14]). The true logistic re-
gression coefficient of the (first) test—which was again nor-
mally distributed with mean O and standard deviation
2—was 1 (odds ratio = 2.7) with intercept 0. We now also
simulated a proxy for this diagnostic test result with a mean
of 0 and a standard deviation of 2 and a correlation of 0.75
with the first diagnostic test. About 40% missing values
were created for the first test completely at random
(MCAR), i.e., 20% for the diseased and 20% for the nondi-
seased subjects.

We used the missing-indicator method to analyze this
data set with a logistic regression model with diagnostic
test, the proxy of this test, and the indicator variable as pre-
dictor variables. Table 2 shows that the regression weights
of the diagnostic test are indeed heavily biased (because the
true value is 1) and also of the proxy variable (because the
true value is 0).

Thus, although the indicator method has the appealing
property that all available information and subjects can be
used in the analyses, the fact that it can lead to biased
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Table 2

Results from a simulation study with true regression coefficient

of 1 in which missing data were created according to “MCAR”

and where the data were imputed with the overall mean or the indicator
method was used (for details see text)

Diagnostic test Proxy

Regression coefficient Regression coefficient

Method (standard error) (standard error)
Indicator method® 0.55 (0.14) 0.51 (0.08)
Overall mean 0.55 (0.14)

% The logistic model in this analysis was In{P(Disease)/
(1 — P(Disease))} = Intercept + b; x Diagnostic test + by X Proxy + b3 x
Indicator, where the Indicator = 1 if the value for diagnostic test was missing
and O otherwise, and where Diagnostic test is O if the value for diagnostic test
was missing.

associations of the original variables and outcome is reason
enough to discard this method even when missing data are
MCAR, let alone when data are MAR.

7.2. Imputation using the overall sample mean

In this section we will use our simulation study to show
the effect of imputation using the overall sample mean.
In the simplest (two variable) case where we only consider
the association between disease status and a continuous di-
agnostic test, the magnitude and significance of the associ-
ation (regression coefficient) of the test with the outcome
are based on the difference in overlap of the test result dis-
tributions between the diseased and nondiseased subjects.
The less the overlap, the higher and more significant the
coefficient. If the two distributions completely overlap, the
regression coefficient will be “0.” We used the same sim-
ulation study of the previous paragraph. Because the miss-
ing values were MCAR, we have an equal proportion of
missing values for the diseased and nondiseased subjects.
Imputing these missing values of the test result by the
overall sample mean of the test result of the observed
subjects—i.e., calculated on the nondiseased and diseased
subjects together—will obviously increase the amount of
overlap. Accordingly, the association between the test and
the outcome will dilute and the regression coefficient will
be biased toward “0” and nonsignificance. This is again
illustrated in Table 2. The regression coefficient is not 1
but 0.55017.

Like the indicator method, the overall mean imputation of
missing values should also be discarded because it will lead
to biased associations even when missing data are MCAR.

8. Final comments

Our purpose was to provide insight into how sophisti-
cated imputation works, to facilitate the understanding
and cooperation between medical researchers and statisti-
cians, and to make the data analysis a success. Complete
and available case analyses provide inefficient though valid

results when missing data are MCAR, but biased results
when missing data are MAR, which is the more common
form of missingness in epidemiological research. Other fre-
quently used methods to handle missing data such as over-
all mean imputation and the missing-indicator method
provide biased results when the missing data are MCAR,
let alone when data are MAR. More sophisticated imputa-
tion techniques, where imputations are based on other
known subject characteristics, are relatively easy to use
and allow for the use of standard software to analyze the
data once the imputations are made. Moreover, doing such
imputation using the multiple imputation approach leads to
unbiased results with correct standard errors, in situations
where missing data are MCAR or MAR.
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